SDF-1α induces PDGF-B expression and the differentiation of bone marrow cells into pericytes.

نویسندگان

  • Randala Hamdan
  • Zhichao Zhou
  • Eugenie S Kleinerman
چکیده

Platelet-derived growth factor B (PDGF-B) and its receptor, PDGFR-β, play a critical role in pericyte maturation; however, the mechanisms by which PDGF-B is upregulated in the tumor microenvironment remain unclear. We previously showed that upregulating stromal-derived factor, SDF-1α, in VEGF(165)-inhibited Ewing's sarcoma tumors (TC/siVEGF(7-1)) induced PDGF-B mRNA expression, increased infiltration and differentiation of bone marrow cells (BMC) into pericytes and, rescued tumor growth. The purpose of this study was to investigate the mechanism by which SDF-1α increased PDGF-B expression and the role of this pathway in BM-derived pericyte differentiation. We showed that SDF-1α induced expression of PDGF-B mRNA and protein both in vitro and in vivo. In contrast, inhibiting SDF-1α downregulated PDGF-B. We cloned the 2-kb pdgf-b promoter fragment and showed that SDF-1α activates PDGF-B via a transcriptional mechanism. Chromatin immunoprecipitation showed that the ELK-1 transcription factor binds to the pdgf-b promoter in response to SDF-1α. We confirmed the correlation between the SDF-1α/PDGF-B pathway and the differentiation of PDGFR-β+ BMCs into mature pericytes using an in vitro assay. These findings show that SDF-1α regulates PDGF-B expression and that this regulation plays a critical role in the differentiation of PDGFR-β+ BMCs into mature pericytes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Blocking SDF-1α/CXCR4 downregulates PDGF-B and inhibits bone marrow-derived pericyte differentiation and tumor vascular expansion in Ewing tumors.

Bone marrow cells (BMC) are critical to the expansion of the tumor vessel network that supports Ewing sarcoma growth. BMCs migrate to the tumor and differentiate into endothelial cells and pericytes. We recently demonstrated that stromal-derived growth factor 1α (SDF-1α) regulates platelet-derived growth factor B (PDGF-B) and that this pathway plays a critical role in bone marrow-derived pericy...

متن کامل

Angiogenesis, Metastasis, and the Cellular Microenvironment SDF-1a Induces PDGF-B Expression and the Differentiation of Bone Marrow Cells into Pericytes

Platelet-derived growth factor B (PDGF-B) and its receptor, PDGFR-b, play a critical role in pericyte maturation; however, the mechanisms by which PDGF-B is upregulated in the tumor microenvironment remain unclear. We previously showed that upregulating stromal-derived factor, SDF-1a, in VEGF165-inhibited Ewing's sarcoma tumors (TC/siVEGF7-1) induced PDGF-BmRNA expression, increased infiltratio...

متن کامل

Blocking SDF-1a/CXCR4 Downregulates PDGF-B and Inhibits Bone Marrow–Derived Pericyte Differentiation and Tumor Vascular Expansion in Ewing Tumors

Bone marrow cells (BMC) are critical to the expansion of the tumor vessel network that supports Ewing sarcoma growth. BMCsmigrate to the tumor and differentiate into endothelial cells and pericytes.We recently demonstrated that stromal-derived growth factor 1a (SDF-1a) regulates platelet-derived growth factor B (PDGF-B) and that this pathway plays a critical role in bone marrow–derived pericyte...

متن کامل

Simvastatin combined with bone marrow mesenchymal stromal cells (BMSCs) improve burn wound healing by ameliorating angiogenesis through SDF-1α/CXCR4 pathway

Objective(s): Chemokines are wound mediators that promote angiogenesis during wound healing. We hypothesized that Simvastatin in combination with the bone marrow mesenchymal stromal cells (BMSCs) improve burn wound healing by ameliorating angiogenesis via SDF-1α/CXCR4 pathway.Materials and Methods: Under general anesthesia, deep partial-...

متن کامل

Low-frequency vibration treatment of bone marrow stromal cells induces bone repair in vivo

Objective(s):To study the effect of low-frequency vibration on bone marrow stromal cell differentiation and potential bone repair in vivo. Materials and Methods:Forty New Zealand rabbits were randomly divided into five groups with eight rabbits in each group. For each group, bone defects were generated in the left humerus of four rabbits, and in the right humerus of the other four rabbits. To t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular cancer research : MCR

دوره 9 11  شماره 

صفحات  -

تاریخ انتشار 2011